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Algorithm

Problem Definition

A Human visual system has an innate ability to process only
relevant regions of a scene while discarding the rest.

A Saliency detection algorithms aim at computational approach
for detecting these conspicuous object regions In an image

Overview

C Most of theexisting approachesxploit contrast prior and
backgroundorior to detect salient objects. However background
prior Is fragile and iIs prone to failure

C In our work,instead of using background cues, we estintat
foregroundregions in an imagby generatingpbjectness
proposalsand refining them for finally obtainingmooth and
accuratesaliency maps

C We propose a novel salienoyeasure calle&breground
connectivitgwhich determinedow tightly a pixel or a region Is
connected to theestimated foreground

C Scores assigned superpixeldy the proposed foreground
connectivity measure are integrated Intcsaliencyoptimization
frameworkto obtain the finalmap

better than the existing state of the aslpproaches
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lllustration of main phases of our algorithm. (a) Input Image.T{lmesholdedForeground Map(c)
Welights based on foreground connectivitl) Saliency Magfter Optimization (e) Ground truth

ObjectnesdViap andSuperpixels

C Object proposal using modified version of BING [1] where object windows
scored by Laplacian of Gaussian@ like filter applied over 8 normed gradient.

C Given object windows with scores, s,, $;X S, , compute:
k

PixelwiseObjectnesScore PizObj(p) = »  siGi(x,y)
1=1
where G is a Gaussian kernel placed on the centai*abject proposal window.

C Segment image inteuperpixelsand assign a score equal to the sum of Its
constituent pixel scores.

C Objectnessnap Is obtained bgdaptivethresholding

Foreground Connectivity :

C Construct graph with suparixels as nodes where two adjacexperpixelsare
connected by an edge of weight equal to Euclidean distance of the hedaralues.

C Foreground connectivitgf asuperpixekegionRis now defined as

FG(R) = j\;fc\;l d(R, Ry).0(Rx)
> i1 AR, Ry).(1 — 0(Rg))

whered(R, R Is the shortest distance between tvguperpixelfRandR .1 (R)Is 1
If the superpixels estimated as FG thresholdedmap, O otherwise.

background weights in the saliency optimization framework of &val. [2]
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Results and Evaluation
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Visual comparison of various Saliency Maps
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PR curves and Mean Absolute Error on MSRA Dataset and CSSD Dataset.
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